Advanced 4/3-Phase PWM Controller for CPU Core Power

General Description

The RT8867A is an advanced 4/3-phase synchronous buck controller with 3 integrated MOSFET drivers. It integrates an 8-bit DAC that supports Intel VR11.x CPUs power application.

The IC adopts state-of-the-art dynamic phase control capability by PS1/2/3 pins and achieves high efficiency over a wide load range. It uses lossless $R_{DS(ON)}$ current sensing to achieve phase current balance. Other features include adjustable operating frequency, adjustable soft-start, short circuit protection, adjustable over current protection, over voltage protection, under voltage protection, power good indication, VR_HOT indication and VR_SHDN indication.

The RT8867A is available in a small footprint with WQFN-48L 6x6 package.

Ordering Information

RT8867A

-Package Type QW : WQFN-48L 6x6 (W-Type)

 Lead Plating System
 Z : ECO (Ecological Element with Halogen Free and Pb free)

Note :

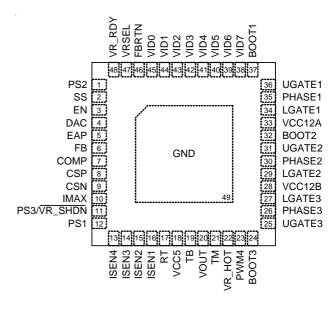
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

RT8867A ZQW YMDNN RT8867AZQW : Product Number YMDNN : Date Code

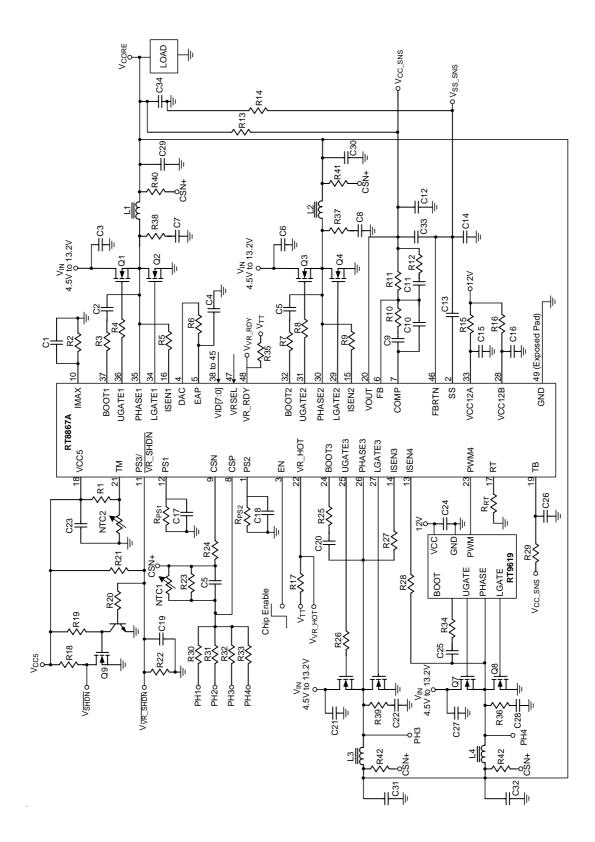
Features


- 12V Power Supply Voltage
- 4/3-Phase Power Conversion
- Integrated 3 MOSFET Drivers with Internal Bootstrap Diode
- Dynamic Phase Control Capability
- 8-bit DAC Supports Intel VR11.x CPUs
- Lossless R_{DS(ON)} Current Sensing for Current Balance
- Adjustable Frequency : 50kHz to 1MHz
- Adjustable Over Current Protection
- Adjustable Soft-Start
- VR_RDY, VR_HOT and VR_SHDN Indications
- Small 48-Lead WQFN Package
- RoHS Compliant and Halogen Free

Applications

- Desktop CPU Core Power
- Middle/High End Graphic Cards
- Low Voltage, High Current DC/DC Converters

Pin Configurations


(TOP VIEW)

WQFN-48L 6x6

Typical Application Circuit

							Tabl	e 1. VR11	.1 V		ae
VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Voltage		VID7	V
0	0	0	0	0	0	0	0	OFF		0	
0	0	0	0	0	0	0	1	OFF		0	
0	0	0	0	0	0	1	0	1.60000		0	
0	0	0	0	0	0	1	1	1.59375		0	
0	0	0	0	0	1	0	0	1.58750		0	
0	0	0	0	0	1	0	1	1.58125		0	
0	0	0	0	0	1	1	0	1.57500		0	
0	0	0	0	0	1	1	1	1.56875		0	
0	0	0	0	1	0	0	0	1.56250		0	
0	0	0	0	1	0	0	1	1.55625		0	
0	0	0	0	1	0	1	0	1.55000		0	
0	0	0	0	1	0	1	1	1.54375		0	
0	0	0	0	1	1	0	0	1.53750		0	
0	0	0	0	1	1	0	1	1.53125		0	
0	0	0	0	1	1	1	0	1.52500		0	
0	0	0	0	1	1	1	1	1.51875		0	
0	0	0	1	0	0	0	0	1.51250		0	
0	0	0	1	0	0	0	1	1.50625		0	
0	0	0	1	0	0	1	0	1.50000		0	
0	0	0	1	0	0	1	1	1.49375		0	
0	0	0	1	0	1	0	0	1.48750		0	
0	0	0	1	0	1	0	1	1.48125		0	
0	0	0	1	0	1	1	0	1.47500		0	
0	0	0	1	0	1	1	1	1.46875		0	
0	0	0	1	1	0	0	0	1.46250		0	
0	0	0	1	1	0	0	1	1.45625		0	
0	0	0	1	1	0	1	0	1.45000		0	
0	0	0	1	1	0	1	1	1.44375		0	
0	0	0	1	1	1	0	0	1.43750		0	
0	0	0	1	1	1	0	1	1.43125		0	
0	0	0	1	1	1	1	0	1.42500		0	
0	0	0	1	1	1	1	1	1.41875		0	
0	0	1	0	0	0	0	0	1.41250		0	
0	0	1	0	0	0	0	1	1.40625		0	
0	0	1	0	0	0	1	0	1.40000		0	

Table 1. VR11.1 VID Code Table

	D Code Table											
VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Voltage				
0	0	1	0	0	0	1	1	1.39375				
0	0	1	0	0	1	0	0	1.38750				
0	0	1	0	0	1	0	1	1.38125				
0	0	1	0	0	1	1	0	1.37500				
0	0	1	0	0	1	1	1	1.36875				
0	0	1	0	1	0	0	0	1.36250				
0	0	1	0	1	0	0	1	1.35625				
0	0	1	0	1	0	1	0	1.35000				
0	0	1	0	1	0	1	1	1.34375				
0	0	1	0	1	1	0	0	1.33750				
0	0	1	0	1	1	0	1	1.33125				
0	0	1	0	1	1	1	0	1.32500				
0	0	1	0	1	1	1	1	1.31875				
0	0	1	1	0	0	0	0	1.31250				
0	0	1	1	0	0	0	1	1.30625				
0	0	1	1	0	0	1	0	1.30000				
0	0	1	1	0	0	1	1	1.29375				
0	0	1	1	0	1	0	0	1.28750				
0	0	1	1	0	1	0	1	1.28125				
0	0	1	1	0	1	1	0	1.27500				
0	0	1	1	0	1	1	1	1.26875				
0	0	1	1	1	0	0	0	1.26250				
0	0	1	1	1	0	0	1	1.25625				
0	0	1	1	1	0	1	0	1.25000				
0	0	1	1	1	0	1	1	1.24375				
0	0	1	1	1	1	0	0	1.23750				
0	0	1	1	1	1	0	1	1.23125				
0	0	1	1	1	1	1	0	1.22500				
0	0	1	1	1	1	1	1	1.21875				
0	1	0	0	0	0	0	0	1.21250				
0	1	0	0	0	0	0	1	1.20625				
0	1	0	0	0	0	1	0	1.20000				
0	1	0	0	0	0	1	1	1.19375				
0	1	0	0	0	1	0	0	1.18750				
0	1	0	0	0	1	0	1	1.18125				

Copyright ©2012 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Torbe acontinued

DS8867A-01 August 2012

RT8867A

Voltage

0.95000

0.94375

0.93750

0.93125

0.92500

0.91875

0.91250

0.90625

0.90000

0.89375

0.88750

0.88125

0.87500

0.86875

0.86250

0.85625

0.85000

0.84375

0.83750

0.83125

0.82500

0.81875

0.81250

0.80625

0.80000

0.79375

0.78750

0.78125

0.77500

0.76875

0.76250

0.75625

0.75000

0.74375

0.73750

0.73125

ID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Voltage	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Γ
	1	0	0	0	1	1	0	1.17500	0	1	1	0	1	0	1	0	
	1	0	0	0	1	1	1	1.16875	0	1	1	0	1	0	1	1	
	1	0	0	1	0	0	0	1.16250	0	1	1	0	1	1	0	0	
	1	0	0	1	0	0	1	1.15625	0	1	1	0	1	1	0	1	
	1	0	0	1	0	1	0	1.15000	0	1	1	0	1	1	1	0	
	1	0	0	1	0	1	1	1.14375	0	1	1	0	1	1	1	1	
	1	0	0	1	1	0	0	1.13750	0	1	1	1	0	0	0	0	
)	1	0	0	1	1	0	1	1.13125	0	1	1	1	0	0	0	1	
)	1	0	0	1	1	1	0	1.12500	0	1	1	1	0	0	1	0	
)	1	0	0	1	1	1	1	1.11875	0	1	1	1	0	0	1	1	
	1	0	1	0	0	0	0	1.11250	0	1	1	1	0	1	0	0	
)	1	0	1	0	0	0	1	1.10625	0	1	1	1	0	1	0	1	ſ
)	1	0	1	0	0	1	0	1.10000	0	1	1	1	0	1	1	0	
)	1	0	1	0	0	1	1	1.09375	0	1	1	1	0	1	1	1	Γ
)	1	0	1	0	1	0	0	1.08750	0	1	1	1	1	0	0	0	Γ
	1	0	1	0	1	0	1	1.08125	0	1	1	1	1	0	0	1	Γ
)	1	0	1	0	1	1	0	1.07500	0	1	1	1	1	0	1	0	Γ
)	1	0	1	0	1	1	1	1.06875	0	1	1	1	1	0	1	1	Γ
)	1	0	1	1	0	0	0	1.06250	0	1	1	1	1	1	0	0	Ι
)	1	0	1	1	0	0	1	1.05625	0	1	1	1	1	1	0	1	
	1	0	1	1	0	1	0	1.05000	0	1	1	1	1	1	1	0	Γ
)	1	0	1	1	0	1	1	1.04375	0	1	1	1	1	1	1	1	
)	1	0	1	1	1	0	0	1.03750	1	0	0	0	0	0	0	0	Γ
)	1	0	1	1	1	0	1	1.03125	1	0	0	0	0	0	0	1	Γ
)	1	0	1	1	1	1	0	1.02500	1	0	0	0	0	0	1	0	Ι
D	1	0	1	1	1	1	1	1.01875	1	0	0	0	0	0	1	1	Ι
0	1	1	0	0	0	0	0	1.01250	1	0	0	0	0	1	0	0	Γ
C	1	1	0	0	0	0	1	1.00625	1	0	0	0	0	1	0	1	Ī
0	1	1	0	0	0	1	0	1.00000	1	0	0	0	0	1	1	0	Ι
)	1	1	0	0	0	1	1	0.99375	1	0	0	0	0	1	1	1	Γ
)	1	1	0	0	1	0	0	0.98750	1	0	0	0	1	0	0	0	Γ
)	1	1	0	0	1	0	1	0.98125	1	0	0	0	1	0	0	1	ſ
D	1	1	0	0	1	1	0	0.97500	1	0	0	0	1	0	1	0	I
)	1	1	0	0	1	1	1	0.96875	1	0	0	0	1	0	1	1	ſ
0	1	1	0	1	0	0	0	0.96250	1	0	0	0	1	1	0	0	Γ
0	1	1	0	1	0	0	1	0.95625	1	0	0	0	1	1	0	1	Γ

Copyright ©2012 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

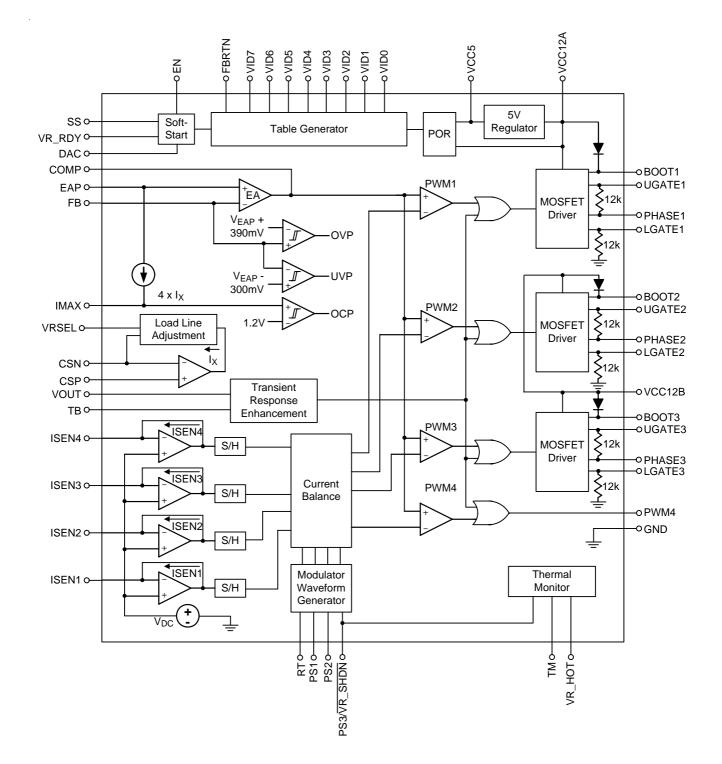
DS8867A-01 August 2012

RT8867A

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Voltage
1	0	0	0	1	1	1	0	0.72500
1	0	0	0	1	1	1	1	0.71875
1	0	0	1	0	0	0	0	0.71250
1	0	0	1	0	0	0	1	0.70625
1	0	0	1	0	0	1	0	0.70000
1	0	0	1	0	0	1	1	0.69375
1	0	0	1	0	1	0	0	0.68750
1	0	0	1	0	1	0	1	0.68125
1	0	0	1	0	1	1	0	0.67500
1	0	0	1	0	1	1	1	0.66875
1	0	0	1	1	0	0	0	0.66250
1	0	0	1	1	0	0	1	0.65625
1	0	0	1	1	0	1	0	0.65000
1	0	0	1	1	0	1	1	0.64375
1	0	0	1	1	1	0	0	0.63750
1	0	0	1	1	1	0	1	0.63125
1	0	0	1	1	1	1	0	0.62500
1	0	0	1	1	1	1	1	0.61875
1	0	1	0	0	0	0	0	0.61250
1	0	1	0	0	0	0	1	0.60625
1	0	1	0	0	0	1	0	0.60000
1	0	1	0	0	0	1	1	0.59375
1	0	1	0	0	1	0	0	0.58750
1	0	1	0	0	1	0	1	0.58125
1	0	1	0	0	1	1	0	0.57500
1	0	1	0	0	1	1	1	0.56875
1	0	1	0	1	0	0	0	0.56250
1	0	1	0	1	0	0	1	0.55625
1	0	1	0	1	0	1	0	0.55000
1	0	1	0	1	0	1	1	0.54375
1	0	1	0	1	1	0	0	0.53750
1	0	1	0	1	1	0	1	0.53125
1	0	1	0	1	1	1	0	0.52500
1	0	1	0	1	1	1	1	0.51875
1	0	1	1	0	0	0	0	0.51250
1	0	1	1	0	0	0	1	0.50625

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Voltage
1	0	1	1	0	0	1	0	0.50000
1	1	1	1	1	1	1	0	OFF
1	1	1	1	1	1	1	1	OFF

Functional Pin Description


Pin No.	Pin Name	Pin Function
1	PS2	Dynamic Phase Control Threshold Input 2. Connect this pin to GND by a resistor to set dynamic phase control threshold.
2	SS	Soft-Start Ramp Slope Set Pin. Connect this pin to FBRTN by a capacitor to adjust soft-start slew rate.
3	EN	Chip Enable Pin. Pull this pin higher than 0.8V to enable the PWM controller.
4	DAC	DAC Output Pin. Connect a resistor from this pin to EAP pin for setting the load line slope.
5	EAP	Non-inverting Input of Error-Amplifier Pin. Connect a resistor from this pin to DAC pin to set the load line slope.
6	FB	Inverting Input of Error Amplifier Pin.
7	COMP	Compensation Pin. Output of error amplifier and input of PWM comparator.
8, 9	CSP, CSN	Input of Current Sensing Amplifier. The sensed current is for droop control and over current protection.
10	IMAX	Output Current Indication. Connect a resistor from this pin to GND to set the over current protection threshold.
11	PS3/VR_SHDN	Multi Function Pin. Dynamic phase control threshold input 3 & VR_SHDN indication. Connect this pin to a resistive voltage divider to set synamic phase control threshold.
12	PS1	Dynamic Phase Control Threshold Input 1. Connect this pin to GND by a resistor to set dynamic phase control threshold.
13, 14, 15, 16	ISN4, ISN3, ISN2, ISN1	Phase Current Sense Pins for Phase 4, Phase 3, Phase 2 and Phase 1. Per phase current signal is sensed via the voltage across low side MOSFETs $R_{DS(ON)}$ for current balance.
17	RT	Switching Frequency Set Pin. Connect this pin to GND by a resistor to adjust switching frequency.
18	VCC5	Internal 5V Regulator Output.
19	тв	Transient Boost Pin. This pin along with the VOUT pin sets the transient boost function.
20	VOUT	Positive Voltage Sensing Pin. This pin is the positive node of the differential voltage sensing and along with TB pin sets the transient boost function.
21	ТМ	Thermal Monitoring Input Pin. Connect a resistive voltage divider with NTC to detect temperature.
22	VR_HOT	Thermal Monitoring Output Pin. Connect a resistor to VTT for VR_HOT signal assertion.
23	PWM4	PWM Output for Phase 4.
24, 32, 37	BOOT3, BOOT2, BOOT1	Bootstrap Power Pins for Phase 3, Phase 2 and Phase 1. This pin powers the high side MOSFETs drivers. Connect this pin to the junction of the bootstrap capacitor with the cathode of the bootstrap diode.
25, 31, 36	UGATE3, UGATE2, UGATE1	Upper Gate Drivers for Phase 3, Phase 2 and Phase 1. This pin drives the gate of the high side MOSFETs.

Pin No.	Pin Name	Pin Function
26, 30, 35	PHASE3, PHASE2, PHASE1	Switch Nodes of High Side Driver 3, Driver2 and Driver1. Connect this pin to high side MOSFETs sources together with the low side MOSFETs drains and inductor.
27, 29, 34	LGATE3, LGATE2, LGATE1	Lower Gate Drivers for Phase 3, Phase 2 and Phase 1. This pin drives the gate of low side MOSFETs.
28	VCC12B	Supply Input Pin. This pin supplies current for phase 2 and phase 3 gate drivers.
33	VCC12A	Supply Input Pin. This pin supplies current for phase 1 gate driver and control circuits.
38 to 45	VID7 to VID0	Voltage Identification Input for DAC.
46	FBRTN	Return Ground Pin. This pin is negative node of the differential remote voltage sensing.
47	VRSEL	Load Line Adjustment Enable Pin. Connect this pin to VTT to disable load line adjustment function or connect this pin to GND to enable load line adjustment function.
48	VR_RDY	VR Ready Indication.
49 (Exposed pad)	GND	The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.

Function Block Diagram

Absolute Maximum Ratings (Note 1)

 Supply Input Voltage (VCC12A, VCC12B) BOOTx to GND 	
DC	
< 20ns	
PHASEx to GND	
DC	
< 20ns	
UGATEx to GND	(V _{PHASE} – 0.3V) to (V _{BOOT} + 0.3V)
< 20ns	(V _{PHASE} – 5V) to (V _{BOOT} + 5V)
LGATEx to GND	(GND – 0.3V) to (V _{CC} + 0.3V)
< 20ns	(GND – 5V) to (V _{CC} + 5V)
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WQFN-48L 6x6	2.857W
Package Thermal Resistance (Note 2)	
WQFN-48L 6x6, θ _{JA}	35°C/W
WQFN-48L 6x6, θ _{JC}	6°C/W
Junction Temperature	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV

Recommended Operating Conditions (Note 4)

Supply Input Voltage (VCC12A, VCC12B)	10.8V to 13.2V
Junction Temperature Range	
Ambient Temperature Range	40°C to 85°C

Electrical Characteristics

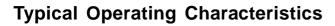
(V_{CC12x} = 12V, $T_A = 25^{\circ}C$, unless otherwise specified)

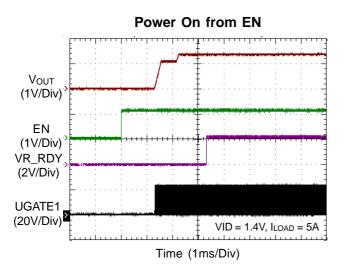
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Input						
Supply Current	I _{CC12}			6		mA
VCC5 Supply Voltage	V _{CC5}	I _{LOAD} = 10mA	4.9	5	5.1	V
VCC5 Output Sourcing	I _{VCC5}		10			mA
Soft-Start Current	I _{SS1}	VR_RDY = Low	68	80	92	μΑ
VID Change Current	I _{SS2}	VR_RDY = High	135	160	185	μA
Transient Boost Sinking Current	I _{TB}		9	10	11	μA
Thermal Management			·			
VR_HOT Threshold Level			41	43	48	%V _{CC5}
VR_HOT Hysteresis				7		%V _{CC5}
VR_SHDN Threshold Level			30	32	34	%V _{CC5}

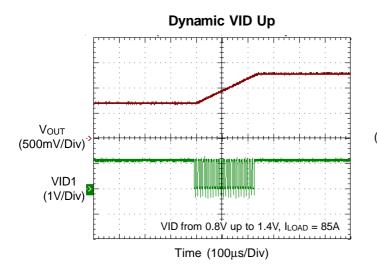
RT8867A

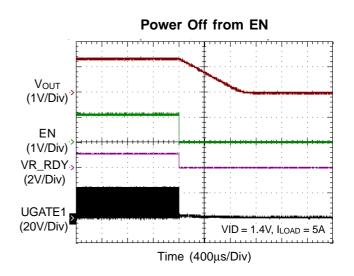
Parameter	•	Symbol	Test Conditions	Min	Тур	Max	Unit
Power On Reset							1
VCC12 Rising Thresh	bld	V _{CC12RTH}	VCC12 Rising	9.2	9.6	10	V
VCC12 Hysteresis		V _{CC12HYS}	VCC12 Falling		0.9		V
VCC5 Rising Threshold	d	V _{CC5RTH}	VCC5 Rising	4.4	4.6	4.8	V
VCC5 Hysteresis		VCC5HYS	VCC5 Falling		0.4		V
Enable Control			-	1	1	1	1
EN Input Threshold	Logic-High	VIH		0.8			
Voltage	Logic-Low	VIL				0.4	V
Oscillator					1	1	1
Switching Frequency		f _{OSC}	$R_{RT} = 24k\Omega$, for 4 Phase Operation	270	300	330	kHz
Adjustable Frequency	Range			50		1000	kHz
Ramp Amplitude			(Note 5)	3.5	4	4.5	V
			3 Phase Operation (Note 5)	61	66	71	
Maximum Duty			4 Phase Operation (Note 5)	70	75	80	%
RT Pin Voltage		V _{RT}		1.55	1.6	1.65	V
Reference Voltage an		VRI		1.00	1.0	1.00	v
Reference voltage an			1V to 1.6V	-0.5		0.5	%
DAC Accuracy			0.8V to 1V	-0.5		8	/o mV
DAG Accuracy			0.5V to 0.8V	-10		10	mV
DAC Input Threshold		. ,	0.57 10 0.87			10	
Voltage (VID0 to	Logic-High	VIH		0.8			v
VID7, VRSEL)	Logic-Low	VIL				0.4	
Error Amplifier					1	1	1
DC Gain		A _{DC}	No Load		80		dB
Gain Bandwidth		GBW	$C_{LOAD} = 10 pF$		10		MHz
Slew Rate		SR	$C_{LOAD} = 10 pF$	10			V/µs
Output Voltage Range		V _{COMP}		0.5		3.6	V
Maximum Current		I _{EA_SLEW}		300			μA
Current Sense							
Maximum Current		IGMMAX		100			μA
Input Offset Voltage		Voscs		-1	0	1	mV
IMAX Current Mirror A	ccuracy		I _{MAX} / I _{AVG} , 4 Phase Operation	368	400	432	%
Droop Current Mirror A	Accuracy		I _{DRP} / I _{AVG} , 4 Phase Operation	368	400	432	%
Gate Driver							
UGATE Drive Source		R _{UGATEsr}	BOOT – PHASE = 8V 250mA Source Current		2	4	Ω
UGATE Drive Sink		R _{UGATEsk}	BOOT – PHASE = 8V 250mA Sink Current		1	2	Ω
LGATE Drive Source		R _{LGATEsr}	V _{LGATE} = 8V		2	4	Ω
LGATE Drive Sink		RLGATEsk	250mA Sink Current		0.8	1.6	Ω

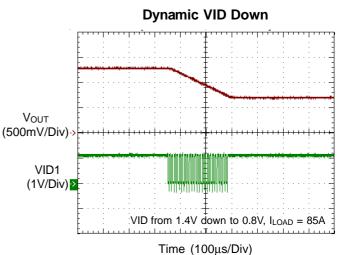
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Protection						
Total Current Protection Threshold	VIMAX		1.1	1.2	1.3	V
Over Voltage Threshold	V _{OVP}	V _{FB} – V _{EAP}	350	390	430	mV
Under Voltage Threshold	V _{UVP}	V _{FB} – V _{EAP}	-380	-300	-250	mV
Over Temperature Protection Threshold		(Note 5)	145	150	175	°C
Over Temperature Protection Hysteresis				20		°C
Output Pin Capability						
VR_HOT Sinking Capability	V _{VR_HOT}	$I_{VR_HOT} = 4mA$		0.05	0.2	V
VR_RDY Sinking Capability	V _{VR_RDY}	$I_{VR_RDY} = 4mA$		0.05	0.2	V
VR_SHDN Sinking Capability	VVR_SHDN	$I_{VR}SHDN} = 4mA$		0.05	0.2	V
PS1/PS2 Sourcing Current	$I_{PS1,}I_{PS2}$		9.2	10	10.8	μA
Reduce Operating Phase	V _{PS1_hys}	2 Phase Operating Reduce to 1 Phase		30		%V _{PS1}
Number Threshold	VPS2_hys	3 Phase Operating Reduce to 2 Phase		20		%V _{PS2}
Hysteresis	V _{PS3_hys}	4 Phase Operating Reduce to 3 Phase		15		% V _{PS3} /5

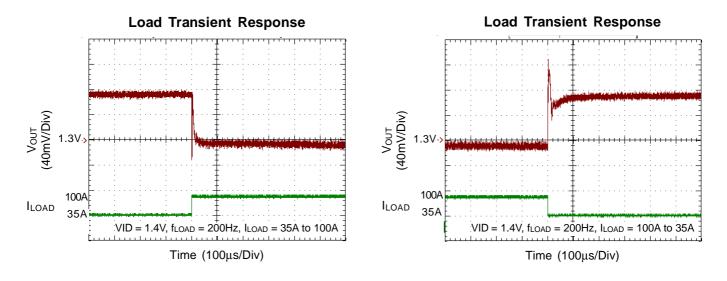

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

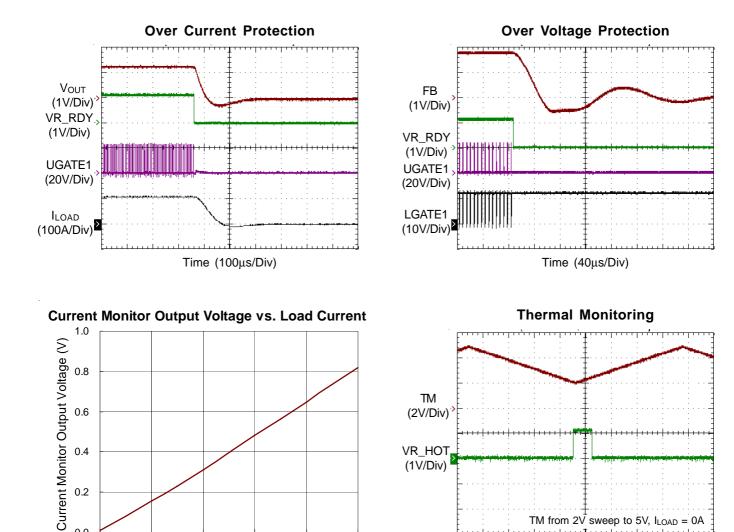

- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.


Note 5. Guaranteed by Design.


Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.







0.0

0

20

40

Load Current (A)

60

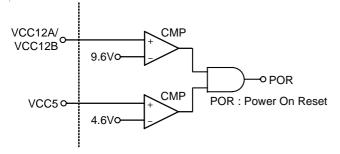
80

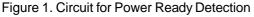
100

TM from 2V sweep to 5V, $I_{LOAD} = 0A$

L....t....L

Time (400µs/Div)




Application Information

The RT8867A is an advanced 4/3 phase synchronous buck controller with 3 integrated MOSFET drivers. It integrates an 8-bit DAC that supports Intel VR11.x VID table.

Supply Voltage and POR

There are three supply voltage pins built in the RT8867A : VCC12A/VCC12B and VCC5. VCC12A/VCC12B are power input pins that receive an external 12V voltage for the embedded driver logic operation. VCC5 is a power output pin which is the output of an internal 5V LDO regulator. The 5V LDO regulator regulates VCC12A to generate a 5V voltage source for internal gate logic and external circuit biasing, e.g., OCP biasing. Since the VCC5 voltage is regulated, the variation of VCC5 (2%) will be much smaller than Platform ATX 5V (5% to 7%). The maximum supply current of VCC5 is 10mA, which is designed only for controller circuit biasing. The recommended configuration of the RT8867A supply voltages is as follows: Platform ATX 12V to the VCC12A/ VCC12B pins, and decoupling capacitors on the VCC12A/ VCC12B and VCC5 pins (minimum 0.1µF). The initialization of the RT8867A requires all the voltage on VCC12A/VCC12B and VCC5 to be ready. Since VCC5 is regulated internally from VCC12A, the VCC5 voltage will be ready (>4.6V) after VCC12A reaches about 7V, so there is no power sequence problem between VCC12A/VCC12B and VCC5. After VCC5 > 4.6V and VCC12A/VCC12B > 9.6V, the internal Power-On-Reset (POR) signal goes high. This POR signal indicates the power supply voltages are all ready. When POR = high and EN = high, the RT8867A initiates soft-start sequence. When POR = low, the RT8867A will try to turn off both high side and low side MOSFETs to prevent catastrophic failure.

Switching Frequency

The switching frequency of the RT8867A is set by an external resistor connected from the RT pin to GND. The frequency follows the graph in Figure 2.

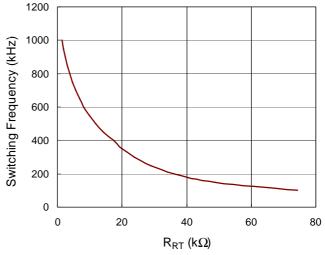


Figure 2. Switching Frequency vs. R_{RT} Resistance

Soft-Start

The V_{OUT} soft-start slew rate is set by a capacitor from the SS pin to FBRTN. Before power on reset (POR = low), the SS pin is held at GND. After power on reset (POR = high, EN = high) and an extra delay of 1600µs (T1), the controller initiates ramping up. V_{OUT} will always trace V_{EAP} during normal operation of the RT8867A, where V_{EAP} is the positive input of the error amplifier, which can be described as V_{EAP} = V_{DAC} – V_{DROOP}. (The definition of V_{DROOP} will be described later in the Load Line section). The first ramping up duration of V_{OUT} (T2) ramps V_{OUT} to V_{BOOT}.

After V_{OUT} ramps to V_{BOOT}, the RT8867A stays in this state for 800 μ s (T3), waiting for a valid VID code sent by the CPU. After receiving the valid VID code, V_{OUT} continues ramping up or down to the voltage specified by VID code. After V_{OUT} ramps to V_{EAP} = V_{DAC} – V_{DROOP}, the RT8867A stays in this state for 1600 μ s (T5) and then asserts VR_RDY = high. The ramping slew rate of T2 and T4 is controlled by the external capacitor connected to SS pin. The voltage of the SS pin will always be VEAP + 0.7V, where the mentioned 0.7V is the typical turn-on threshold of an internal power switch. Before VR_RDY = high, the

Copyright ©2012 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com DS8867A-01 August 2012

slew rate of V_{EAP} is limited to 80μ A/C_{SS}. When VR_RDY = high, the slew rate of V_{EAP} is limited to 160μ A/C_{SS}, which is 2 times faster than the soft-start slew rate for dynamic VID feature. The soft-start waveform is shown in Figure 4.

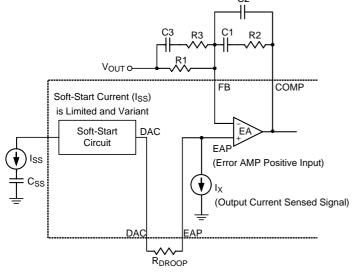


Figure 3. Circuit for Soft-Start and Voltage Control Loop

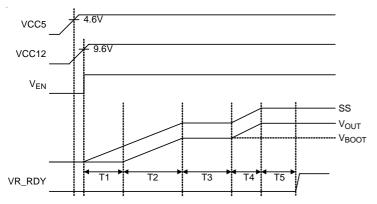


Figure 4. Soft-Start Waveforms

T1 is the delay time from power on reset state to the beginning of V_{OUT} rising. T2 is the soft-start time from $V_{OUT} = 0$ to $V_{OUT} = V_{BOOT}$. T3 is the dwelling time for $V_{OUT} = V_{BOOT}$. T4 is the soft-start time form $V_{OUT} = V_{BOOT}$ to $V_{OUT} = V_{DAC}$.

T5 is the VR_RDY delay time.

 $T1 = 1600\mu s + 0.7V \times C_{SS}/80\mu A.$

$$T2 = V_{BOOT} \times C_{SS}/80\mu A.$$

T3 ≈ 800µs.

$$T4 \approx |V_{DAC} - V_{BOOT}| \times C_{SS}/80\mu A.$$

T5 ≈ 1600µs.

Dynamic VID

The RT8867A can accept VID input changing while the controller is running. This allows the output voltage (V_{OUT}) to change while the DC/DC converter is running and supplying current to the load. This is commonly referred to as VID On-The-Fly (OTF). A VID OTF can occur under either light or heavy load conditions. The CPU changes the VID inputs in multiple steps from the start code to the finish code. This change can be positive or negative. Theoretically, V_{OUT} should follow V_{DAC} which is a staircase waveform, but in real application, the bandwidth of the converter is finite while the staircase waveform needs infinite bandwidth to follow. Thus, undesired V_{OUT} overshoot (when V_{DAC} changes up) or undershoot (when V_{DAC} changes down) is often observed in this type of design.

However, for the RT8867A, as mentioned before in the soft-start section, V_{DAC} slew rate is limited by I_{SS2}/C_{SS} when VR_RDY = high. This slew rate limiter works as a low-pass filter of V_{DAC} and makes the bandwidth of V_{DAC} waveform finite. By smoothening the V_{DAC} staircase waveform, V_{OUT} will no longer overshoot or undershoot. On the other hand, C_{SS} will increase the settling time of V_{OUT} during VID OTF. In most cases, a 5nF to 30nF ceramic capacitor will be suitable for C_{SS} .

Output Voltage Differential Sensing

The RT8867A uses a high gain low offset error amplifier for differential sensing. The CPU voltage is sensed between the FB and FBRTN pins. A resistor (R_{FB}) connects FB pin with the positive remote sense pin of the CPU (V_{CC_SNS}), while the FBRTN pin connects directly to the negative remote sense pin of the CPU (V_{SS_SNS}). The error amplifier compares V_{EAP} (= V_{DAC} – V_{DROOP}) with the V_{FB} to regulate the output voltage.

Transient Boost

In steady state, the voltage of V_{OUT} is controlled to be very close to V_{EAP}, however a load step transient from light load to heavy load could cause V_{OUT} to be lower than V_{EAP} by several tens of mV. In conventional buck converter design (without non-linear control) for CPU VR application, due to limited control bandwidth, it is hard for the VR to prevent V_{OUT} undershoot during quick load transient from light load to heavy load. Hence, the RT8867A builds in a

state-of-the-art transient boost function which detects load transient by monitoring V_{OUT}. If V_{OUT} suddenly drops below "V_{TB}" the transient boost signal rises up and the RT8867A turns on all high side MOSFETs and turns off all low side MOSFETs. The voltage difference "V_{OUT} – V_{TB}" is set by following equation :

 $V_{OUT}-V_{TB}=10\mu A\;x\;R_{TB}.$

Sensitivity of the transient boost can be adjusted by varying the values of C_{FB} and R_{FB} . Smaller R_{FB} and/or larger C_{FB} will make transient boost easier to be triggered. Figure 5 shows the circuit and typical waveforms.

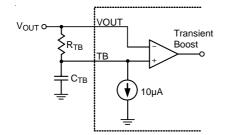


Figure 5. (a) Transient Boost Circuit

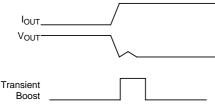
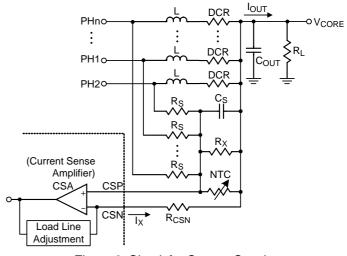


Figure 5. (b) Typical Waveforms

Output Current Sensing

The RT8867A provides a low input offset Current Sense Amplifier (CSA) to monitor the output current. The output current of CSA (I_X) is used for load line control, dynamic phase control and over current protection. In this average inductor current sensing topology, R_S and C_S must be set according to the equation below :


 $Requ = R_X //R_{NTC}$ $L = R_S \times C_S$

$$\overline{\text{DCR}} = \frac{R_{\text{S}}}{N + \frac{R_{\text{S}}}{R_{\text{Equ}}}}$$

Where the constant N is a set maximum operation phase number, not affected by the dynamic phase control machine. Then, the output current of CSA will follow the equation below :

 $I_X = \frac{I_{OUT} \times DCR}{N \times R_{CSN}}$

Figure 6 is the current sense circuit.

RICHTE

Figure 6. Circuit for Current Sensing

Load Line

The RT8867A utilizes inductor DCR current sense technique for load line control function. The sensed output current is proportionally mirrored from the I_X signal to the R_{DROOP} resistor to establish the voltage of V_{DROOP}. V_{DROOP} subtracted from V_{DAC} generates V_{EAP}. The voltage control loop is shown in Figure 3. Because I_X is a PTC (Positive Temperature Coefficient) current, an NTC (Negative Temperature Coefficient) resistor is needed to connect in parallel with the capacitor C_S. If the NTC resistor is properly selected to compensate the temperature coefficient of I_X, the V_{DROOP} voltage will be proportional to I_{OUT} without temperature effect. In the RT8867A, the positive input of error amplifier is V_{EAP} and V_{OUT} will follow "V_{DAC} – V_{DROOP}". Thus, the output voltage which decreases linearly with I_{OUT} is obtained. The load line is defined as :

$$LL(Load Line) = \frac{\Delta V_{OUT}}{\Delta I_{OUT}} = \frac{\Delta V_{DROOP}}{\Delta I_{OUT}} = \frac{DCR \times R_{DROOP} \times 4}{N \times R_{CSN}}$$

Basically, the resistance of R_{DROOP} sets the resistance of the load line. The temperature coefficient of R_{DROOP} compensates the temperature effect of the load line.

Connecting VRSEL pin to GND enables load line adjustment function. When load line adjustment function is enabled, the current I_X is decreased by $10mV/R_{CSN}$. Note that the minimum output current sensing range is also reduced by $10mV/R_{CSN}$ when load line adjustment function is enabled.

Copyright ©2012 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

RT8867A

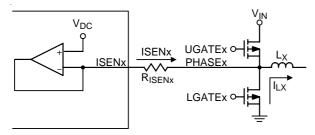
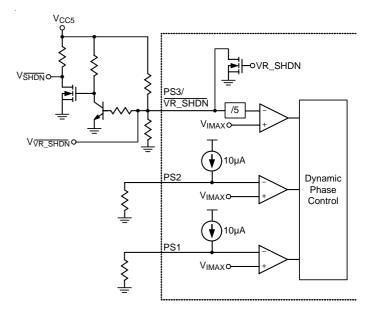
Current Balance

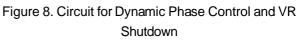
The RT8867A sensed per phase current signal I_{SENx} via the voltages on the low side MOSFETs switch on resistance ($R_{DS(ON)}$) for current balance as shown in Figure 7, in which I_{SENx} is defined as :

 $I_{SENx} = \frac{I_{PHASEx} \times R_{DSON} + V_{DC}}{R_{SENx}}$

Where V_{DC} is the offset voltage for the current balance circuit.

In Figure 7, the phase current sense signals I_{SENx} are used to raise or lower the internal sawtooth waveforms (RAMP [1] to RAMP [n]) which are compared with error amplifier output (COMP) to generate a PWM signal. The raised sawtooth waveform will decrease the PWM duty of the corresponding phase current and the lowered sawtooth waveform will increase the PWM duty of the corresponding phase current. Eventually, current flowing through each phase will be balanced.


Figure 7. Circuit for Current Balance

Dynamic Phase Control Capability

The RT8867A has the ability to automatically control its phase number according to the total load current. Connect a resistive voltage divider to PS3 pin to define the 3-4 phase transition threshold, V_{PS3} . Connect a resistor to ground at PS2 pin to set the 2-3 phase transition threshold, V_{PS2} . Connect a resistor to ground at PS1 pin to set the 1-2 phase transition threshold, V_{PS1} .

The voltage at IMAX pin (V_{IMAX}) represents total current information, and the RT8867A will compare V_{IMAX} with V_{PS1}, V_{PS2} and V_{PS3} / 5 to determine the number of operating phases. Figure 8 shows the typical connections of PS1, PS2 and PS3 pins for setting the dynamic phase control thresholds.

VIMAX			Phase Number		
			Max 4 Phase	Max 3 Phase	
V _{PS1} < 0.8V, V _{PS2} < 0.1V V _{IMAX} = Don't Care			Forced 1	Forced 1	
V _{PS1} > 0.8V, V _{PS2} > 0.1V, V _{IMAX} = Don't Care			Forced 4	Forced 3	
> V _{PS1}	> V _{PS2}	$> \frac{V_{PS3}}{5}$	4	3	
> V _{PS1}	$> V_{PS2}$	< $\frac{V_{PS3}}{5}$	3	3	
> V _{PS1}	< V _{PS2}	< \frac{V_{PS3}}{5}	2	2	
< V _{PS1}	< V _{PS2}	< V _{PS3} 5	1	1	

Table 2. Dynamic Phase Control

After setting the voltages at the PS1 to PS3 pins, the RT8867A will continuously compare V_{IMAX} and V_{PS1} to V_{PS3} after POR. Once the V_{IMAX} enters each voltage state mentioned in Table 2, the RT8867A will automatically change its operation phase number. See Table 2 for the dynamic phase control mechanism. For Example, If V_{PS1} = 0.3V, V_{PS2} = 0.5V, V_{PS3} = 4V, the RT8867A will operate in 4-phase operation when V_{IMAX} = 0.9V, and 2 phase operation when V_{IMAX} = 0.4V. There are two states mentioned in Table 2 that the RT8867A will be forced not to change its operating phase number, and the V_{IMAX} voltage is meaningless for dynamic phase control circuit under these conditions.

Over Current Protection (OCP)

When V_{IMAX} is higher than 1.2V, the over current protection is triggered with 100µs delay to prevent false trigger, and the short circuit OCP level is designed at 1.6V with 10µs delay. The controller will turn off all high side / low side MOSFETs to protect CPU. Note that, the OCP level does not change according to different operating phase numbers.

Over Voltage Protection (OVP)

The over voltage protection monitors the output voltage via the FB pin. Once V_{FB} exceeds " V_{EAP} + 390mV", OVP is triggered and latched. The RT8867A will turn on low side MOSFET and turn off high side MOSFET to protect CPU.

Under Voltage Protection (UVP)

The under-voltage protection monitors the output voltage via the FB pin. Once VFB is lower than " $V_{EAP} - 300mV$ ", UVP is triggered and latched. The RT8867A will turn off all high side / low side MOSFETs to protect CPU.

Loop Compensation

The RT8867A is a voltage mode controller and requires external compensation. To compensate a typical voltage mode buck converter, there are two ordinary compensation schemes, commonly known as type-II compensator and type-III compensator. The choice of using type-II or type-III compensator lies with the platform designers, and the main concern deals with the position of the capacitor ESR zero and mid-frequency to high frequency gain boost. Typically, the ESR zero of output capacitor will tend to stabilize the effect of output LC double poles. Hence, the position of the output capacitor ESR zero in frequency domain may influence the design of voltage loop compensation. Figure 9 shows a typical control loop using type-III compensator. Below is the compensator design procedure.

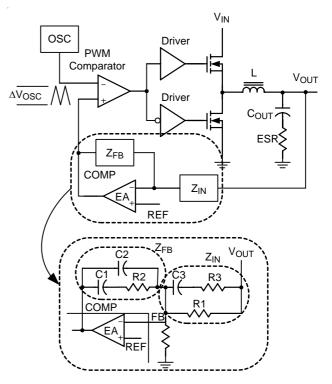


Figure 9. Compensation Circuit

1) Modulator Characteristic

The modulator consists of the PWM comparator and power stage. The PWM comparator compares the error amplifier output (COMP) with oscillator (OSC) sawtooth wave to provide a Pulse-Width Modulated (PWM) gate-driving signal. The PWM wave is smoothed out by the output filter, L_{OUT} and C_{OUT} . The output voltage (V_{OUT}) is sensed and fed to the inverting input of the error amplifier. The modulator transfer function is the small-signal transfer function of V_{OUT}/V_{COMP} (output voltage over the error amplifier output). This transfer function is dominated by a DC gain, a double pole, and an ESR zero as shown in Figure 10. The DC gain of the modulator voltage V_{OSC} . The output LC filter introduces a double pole, 40dB/

decade gain slope above its corner resonant frequency, and a total phase lag of 180 degrees. The resonant frequency of the LC filter is expressed as:

$$f_{LC} = \frac{I}{2\pi \times \sqrt{L_{OUT} \times C_{OUT}}}$$

The ESR zero is contributed by the ESR associated with the output capacitance. Note that this requires the output capacitor to have enough ESR to satisfy stability requirements. The ESR zero of the output capacitor is expressed as the following equation :

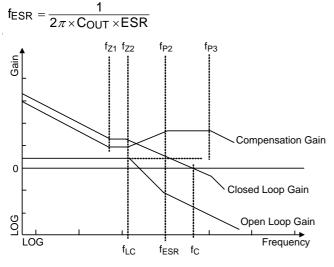


Figure 10. Bode Plot of Loop Gain

2) Design of the Compensator

A well-designed compensator regulates the output voltage to the reference voltage V_{REF} with fast transient response and good stability. In order to achieve fast transient response and accurate output regulation, an adequate compensator design is necessary. The goal of the compensation network is to provide adequate phase margin (usually greater than 45°) and the highest bandwidth (0dB crossing frequency, f_C) possible. It is also recommended to manipulate the loop frequency response such that its gain crosses over 0dB at a slope of –20dB/ dec. According to Figure 10, the location of poles and zeros are :

$$f_{Z1} = \frac{1}{2\pi \times R2 \times C1}$$

$$f_{Z2} = \frac{1}{2\pi \times (R1 + R3) \times C3}$$

$$f_{P1} = 0$$

$$f_{P2} = \frac{1}{2\pi \times C3 \times R3}$$

$$f_{P3} = \frac{1}{2\pi \times \frac{C1 \times C2 \times R2}{C1 + C2}}$$

Generally, f_{Z1} and f_{Z2} are designed to cancel the double pole of the modulator. Usually, place f_{Z1} at a fraction of f_{LC} , and place f_{Z2} at f_{LC} . f_{P2} is usually placed at f_{ESR} to cancel the ESR zero, and f_{P3} is placed below the switching frequency to cancel high frequency noise.

For a given bandwidth, R2, f_{Z1} , f_{Z2} , f_{P2} , f_{P3} , then

$$C1 = \frac{1}{2\pi \times R2 \times f_{Z1}}$$

$$C3 = \frac{G_{vd@BW}}{2\pi \times f_C \times R2}$$

$$R1 = \frac{1}{2\pi \times f_{Z2} \times C3}$$

$$R3 = \frac{1}{2\pi \times f_{P2} \times C3}$$

$$C2 = \frac{1}{2\pi \times f_{P3} \times C1 \times R2 - 1}$$

where $G_{vd @\,BW}$ is open loop gain at cross over frequency.

Thermal Monitoring (VR_HOT&VR_SHDN)

The RT8867A provides thermal monitoring function via sensing the TM pin voltage, and which can set 2 thresholds to indicate ambient temperatures through the voltage divider R1 and R_{NTC}. The voltage of TM is typically set to be higher than 0.5 x VCC5 when ambient temperature is lower than VR_HOT & VR_SHDN assertion target. However, when ambient temperature rises, TM voltage will fall, and the VR_HOT signal will be set to high if TM voltage drops below 0.43 x VCC5. Furthermore, if the temperature continues to rise and the TM voltage is lower than 0.32 x VCC5, the controller will pull the VR_SHDN signal to low. Accordingly, VR_HOT will be reset when TM voltage rises above 0.5 x VCC5, but the VR_SHDN signal will not recover to high once thermal shutdown occurs.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

Copyright ©2012 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS8867A-01 August 2012

$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{JA}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications of the RT8867A, the maximum junction temperature is 125°C and T_A is the ambient temperature. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WQFN-48L 6x6 packages, the thermal resistance, θ_{JA} , is 35°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by the following formula :

 $P_{D(MAX)}$ = (125°C - 25°C) / (35°C/W) = 2.857W for WQFN-48L 6x6 package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . For the RT8867A package, the derating curve in Figure 11 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

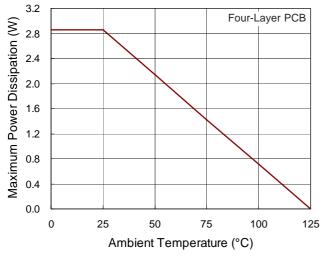
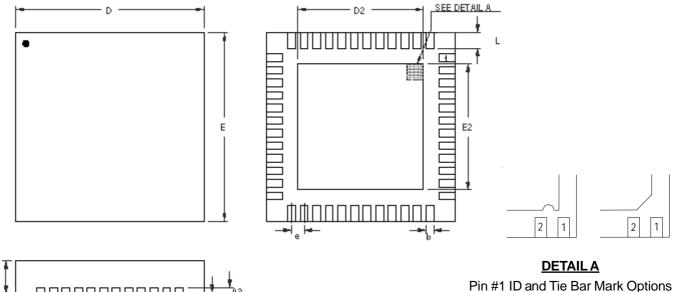



Figure 11. Derating Curve for RT8867A Package

Outline Dimension

A

Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
А	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.175	0.250	0.007	0.010
b	0.150	0.250	0.006	0.010
D	5.950	6.050	0.234	0.238
D2	4.250	4.350	0.167	0.171
E	5.950	6.050	0.234	0.238
E2	4.250	4.350	0.167	0.171
е	0.400		0.016	
L	0.350	0.450	0.014	0.018

W-Type 48L QFN 6x6 Package

Richtek Technology Corporation

5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.